Below is an example of the Merge Sort algorithm in Java. See the Merge Sort page for more information and implementations.
class MergeSort { public static void main(String[] args) { int[] array = {12, 11, 15, 10, 9, 1, 2, 3, 13, 14, 4, 5, 6, 7, 8}; MergeSort sorter = new MergeSort(); sorter.mergeSort(array, 0, array.length - 1); System.out.println(java.util.Arrays.toString(array)); } // main function that sorts array[start..end] using merge() void mergeSort(int[] array, int start, int end) { // base case if (start < end) { // find the middle point int middle = (start + end) / 2; mergeSort(array, start, middle); // sort first half mergeSort(array, middle + 1, end); // sort second half // merge the sorted halves merge(array, start, middle, end); } } // merges two subarrays of array[]. void merge(int[] array, int start, int middle, int end) { int[] leftArray = new int[middle - start + 1]; int[] rightArray = new int[end - middle]; // fill in left array for (int i = 0; i < leftArray.length; ++i) leftArray[i] = array[start + i]; // fill in right array for (int i = 0; i < rightArray.length; ++i) rightArray[i] = array[middle + 1 + i]; /* Merge the temp arrays */ // initial indexes of first and second subarrays int leftIndex = 0, rightIndex = 0; // the index we will start at when adding the subarrays back into the main array int currentIndex = start; // compare each index of the subarrays adding the lowest value to the currentIndex while (leftIndex < leftArray.length && rightIndex < rightArray.length) { if (leftArray[leftIndex] <= rightArray[rightIndex]) { array[currentIndex] = leftArray[leftIndex]; leftIndex++; } else { array[currentIndex] = rightArray[rightIndex]; rightIndex++; } currentIndex++; } // copy remaining elements of leftArray[] if any while (leftIndex < leftArray.length) array[currentIndex++] = leftArray[leftIndex++]; // copy remaining elements of rightArray[] if any while (rightIndex < rightArray.length) array[currentIndex++] = rightArray[rightIndex++]; } }